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Unfolding
Unfolding (a.k.a. “inverse problem” or 
“deconvolution”) is the procedure of 
correcting for distortions due to limited 
resolution of the measuring device!

Not unique to physics: all you need is a 
distorting transmission medium!

Training: knowing the truth, you estimate 
the distortion via simulation, and invert 
the relationship to “correct for it”!

Goal: compare results between 
experiments, make results human-
friendly (e.g. de-blurred pictures)

Apply correction

“Hello my dear”

“Hello my deer”

“Hello my dear”
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Picture of red giant !
star "1 Gruis!

[Nature 553, 310–312 (2018)]
NB: unrelated to “molecule folding” in chemistry

https://www.nature.com/articles/nature25001?utm_medium=affiliate&utm_source=commission_junction&utm_campaign=3_nsn6445_deeplink_PID100052570&utm_content=deeplink


Bin-by-Bin Ratio
Data represented by histograms, i.e. physical quantities 
(“observables”) such as momentum or invariant mass are pooled #
into N bins within a given range e.g. [0, 1500]!

Simple method: binÑbyÑbin ratio !

Sources of distortion:!

$Backgrounds: entries due to a process mimicking that under 
consideration (noise) !

$Migrations: measured value different from true!

$Efficiency, Acceptance: entries mistakenly discarded (false 
negatives) or taken into account (false positives)!

<z Use detector simulation  (C++/FORTRAN) to estimate 
distortions by filling the elements of a Response Matrix Rij. !

Matrix Inversion (MI) basically equivalent to least-squares 
fitting

Correction factors method

1.Invert response matrix 
2.Apply to data 
3.Get the truth-level histogram

Matrix inversion method
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Matrix Inversion
When uncertainties are added, MI unfolding amplifies 
the “noise” e.g. by introducing sharp peaks to 
compensate for the “smearing” of the true distribution 
(“unregularized”)!

Matrix mostly diagonal ~ small migrations !

Off-diagonal elements often poorly known (e.g. entries 
with large momentum measured with small momentum)!

Solution: add a “smoothness” constraint e.g. Tikhonov 
regularization (abs of second derivative) to favour 
“flatter” solutions!

Need to recast problem in terms of a likelihood (cost) 
function to be optimized
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1.Invert response matrix 
2.Apply to data 
3.Get the truth-level histogram

Matrix inversion method
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Likelihood-based Unfolding
No inherent matrix inversion, truth histogram found 
by optimization (“likelihood” of being the correct 
solution)!

Smoothness constraint introduces information from 
the outside - solution more regular (reduced 
variance) at the price of being biased!

Allows to calibrate sources of systematic error. #
Running time can be very large for O(Nbins) > 10 and 
O(Nsyst) ~ 100 as in LHC experiments!

Ideally, a Quantum Annealer can speed up the 
calculation - but cannot handle exp, factorial!

>> Some simplifications are needed
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Unfolding as Quantum Annealing

&=offset#
'=encoding  

Poisson !  Gaussian in large N limit, then take logL (NB: log(y) is monotonic)!

Represent numbers in binary (digitization) with n bits !  encode xi i=0…(N-1) 
numbers with Nn qubits
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Unfolding as Quantum Annealing
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Laplacian operator!
Discrete second derivative

Strength parameter to control importance of regularization

Observed data per bin (decimal)

Unfolded histogram (binary, encoded by qubits)

Response matrix, estimated from simulation, multiplies binary to get decimal

Unfolded histogram (binary, encoded by qubits)
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Actual calculation of QUBO weights done “by hand” and using numpy.einsum 
Same QUBO weights can be obtained using PyQUBO

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pyqubo.readthedocs.io/en/latest/
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Toy Models
$ Real-life applications not possible, lack of public data / sw!

$  Created two “toy models” to capture the essence of 
common measurements at the LHC:!

$ Peaking (e.g. mass)!

$ Steeply falling (e.g. momentum)!

$ Compare wrt “benchmark” method [D’Agostini 2010]!

$ Toy model distortions (Rij) perfectly known!

$ Closure test: truth-level histogram of data (di) and 
simulation the same, check consistency!

$ Uncertainty of QA unfolded histograms = 1 stdev from 20 
executions with 5,000 reads from the QPU per run

Mass

En
tri
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Momentum

En
tri

es

12

https://arxiv.org/abs/1010.0632


Results / 1
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$ In a simple case, comparable with execution 
on CPU (simulated annealing “neal ”) and 
with D’Agostini
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$Regularization promotes flatter solutions - known  
to be problematic for steeply falling distributions!

$Strength depends on the problem
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Results / n-bits encoding
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$8-bits vs of 4-bits encoding:!

$ Increased “granularity” of the 
solution !

$better numerical precision!

$ longer chains of qubits, 7 (4-
bits) and 15 (8-bits) qubits!

$Lower-noise: DW_2000Q_5!

$Regular-noise: DW_2000Q_2_1
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Role of Systematic Uncertainties
$Sources of systematic uncertainty shift the 

value yi of each bin by a certain amount 
( yi to be determined from best-fit!

$±1) variations si estimated from simulation!

$Interpolation done during the optimization!

$Vector x (unfolded histogram) and matrix 
Rij extended to include strength of 
systematics zi in 1) units #
(e.g. +1) = si, -0.5) = -0.5 si)!

$Parameter * controls relative importance 
of systematics in optimization

Unregularized!
Matrix Inversion

Tikhonov #
Regularization

Systematic!
Shifts
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Results / Unfolding with Systematics

$ In a simple case with 1 systematic 
the problem is not too much 
degenerate and the strength is 
recovered!

$ For very large strength (*=1000) the 
solution differs between execution 
on CPU and QPU!

$ Large gap largest-smallest QUBO 
weights?!

$ Also tested Tabu heuristic, results 
equivalent to execution with CPU1 2 3 4 5
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Conclusions
$ Unfolding (“deconvolution”) central to experimental science, other areas as well (e.g. 

sound de-noising, image sharpening)!

$ Presented an implementation of likelihood-based regularized unfolding!

$ Cost function derived from “full-fledged” with some approximations, math follows 
naturally to define QUBO weights!

$ Performance on simple models comparable to “classical” methods!

$ Simple models = few bins, well-behaving migrations, short qubits chains!

$ Scaling up to realistic situations with >10 bins and ~100 systematics requires hybrid 
approach (e.g. Tabu) or new-generation QPUs (e.g. Pegasus graph QPUs)
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Peer-reviewed paper: JHEP 11(2019)128 !
Code repository: https://github.com/rdisipio/quantum_unfolding

https://link.springer.com/article/10.1007/JHEP11(2019)128
https://github.com/rdisipio/quantum_unfolding
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Unfolding in Particle Physics
Simulate interactions between particles 
(e.g. Higgs boson production from 
proton-proton collisions) based on 
Standard Model  calculations (“truth”)!

Simulate response of detector 
(introduces distortion due to limited 
resolution, dead material, etc…) 
(“reconstruction”)!

Train regressor to learn distortions!

Apply correction (=invert distortions) to 
real data (“unfolded”)

Outgoing!
Particle 2

Proton beam 1 Proton beam 2

Detector

Outgoing!
Particle 1
Outgoing!
Particle 1

Theoretical Truth!
(“Standard Model”)

As seen by the Detector!
(simulation ~ real instrument)

Outgoing!
Particle 1

Outgoing!
Particle 2
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QUBO Weights

xi = ! i + " i

n ! 1!

j =0

2j qn " i + j = ! i + " ia qa
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With

1)

2)

3)

(you can obtain the same result using PyQUBO)
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(we also recommend using numpy.einsum)

https://pyqubo.readthedocs.io/en/latest/
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html


Unfolding 101

Source: “Experience with using unfolding procedures in ATLAS”, Silvia Biondi On Behalf of the ATLAS Collaboration, EPJ Web Conferences 137, 11002 (2017)

Migration Matrix
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https://www.epj-conferences.org/articles/epjconf/pdf/2017/06/epjconf_conf2017_11002.pdf


Other applications in HEP
$ QFT calculations (cross-sections): see Jordan, Lee, Preskill Science 

336:1130, (2012) and arXiv:1404.7115 (2014)!

$ Track-finding: Quantum Associative Memory (à la FTK) using DWave 
hamiltonian to minimize quadratic unconstrained binary optimization  (QUBO). 
99.4% effi cient with 60 tracks See https://sites.google.com/lbl.gov/hep-qpr!

$ Background estimation: quantum Gaussian process, see arXiv:1803.10520!

$ Quantum Machine Learning: Hamiltonian minimization via tunnelling 
instead of back propagation (QNN); quantum support vector machines 
(qSVM)!

$ H(! **) vs bkg, Nature 550, 375-379(Oct 2017). DWave Ising hamiltonian 
minimized, 36 input variables [J.R. Vlimant, M. Spiropulu et al.]!

$ ttH(! **) signal vs bkg. First attempt using IBM Qiskit with 45(feat) !  
PCA! 20(qbits) [W. Guan et al.]!

$ Final State Radiation in Parton Shower [arXiv:1904.03196]!

$ Unfolding as quantum annealing [arXiv:1908.08519] (this work)!

$ Unfolding Quantum Computer Readout Noise [arXiv:1910.01969] (Qiskit)
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https://sites.google.com/lbl.gov/hep-qpr
https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf
https://indico.cern.ch/event/719844/contributions/3197680/attachments/1747383/2830067/Quantum_machine_learning_for_hep-_VERSION_31.pdf
https://arxiv.org/abs/1904.03196
https://arxiv.org/abs/1908.08519
https://arxiv.org/abs/1910.01969

